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Abstract

Multi-agent reinforcement learning (MARL) is an active area of research in machine

learning with many important practical applications. The StarCraft Multi-Agent Chal-

lenge (SMAC), a set of fully-cooperative partially observable MARL test environments

using StarCraft II, is an important standardized benchmark in this field. Despite its value,

SMAC remains inaccessible to many researchers in this field as it requires expensive

computer hardware to use in practice.

This project introduces SMAC-lite, a MARL test environment that can be used as

an alternative to SMAC, based on SMAC’s 5m vs 6m test environment. We show that

SMAC-lite is significantly faster than SMAC whilst showing comparable performance

on the QMIX and IQL MARL algorithms. With this project, we aim to introduce and

lay the groundwork for an alternative to SMAC that is more accessible and inclusive to

researchers working in this field.
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Chapter 1

Introduction

Reinforcement learning is a branch of research in machine learning that deals with learn-

ing how to take the best actions over time to maximize an overall reward. Reinforcement

learning emerged in the early 1980s [1] as a confluence of several streams of work

in areas ranging from animal learning psychology [2] to solving problems in optimal

control theory [3]. This field has grown rapidly since then and is now considered to be

one of the primary paradigms of machine learning [4].

In reinforcement learning, one or more agents choose actions based on observations

from their given environment to minimize punishment and maximize reward. The best

actions given the state of the environment must be inferred through repeated trial and

error experiences, much in the same way a human might improve their chess skills by

playing many practice games. Like in chess, present actions may affect rewards and

punishments far into the future. These unique challenges distinguish reinforcement

learning from other types of machine learning [1]. Figure 1.1 shows a high-level view

of a reinforcement learning system. The area of reinforcement learning that our work

addresses is multi-agent reinforcement learning (MARL). These are reinforcement

learning tasks where an environment is shared by multiple agents.

Due to the highly general modelling framework supplied by reinforcement learning,

it is a powerful toolkit to tackle some of the most challenging problems in artificial

intelligence (AI). Reinforcement learning has been applied to realize the advent of

self-driving cars [6], to understand how to optimally allocate common pool1 resources

[7] and to beat skilled human players at complex video games such as StarCraft II [8].

Indeed, due to the raw complexity of the latter [8] combined with its highly competitive

1Common pool resources are natural or manufactured resources such as water, fishing quotas, energy
supplies, etc.

1



Chapter 1. Introduction 2

Figure 1.1: A block diagram showing the high-level architecture of a reinforcement

learning system [5].

professional e-sports leagues, this research has been subject to particular media attention,

with the Guardian describing it as a “landmark achievement”2 in AI.

In general, StarCraft II is understood to be an excellent test environment for rein-

forcement learning [9] and much work has been done in this domain. One such work

is the StarCraft Multi-Agent Challenge (SMAC) [10], a framework that leverages the

rich game dynamics of StarCraft II for MARL research. Specifically, SMAC focuses on

MARL problems where agents must work together, each with a limited view of their

environment, to maximize a common reward. It consists of a set of mini-challenges

derived from, but distinct to the full game of StarCraft II. Each mini-challenge consists

of two teams of units in various configurations competing to win a game. The ‘friendly’

team consists of agents controlled by a MARL algorithm with the ‘enemy’ team com-

prising of units controlled by StarCraft II’s hand-coded AI. Each mini-challenge aims

to be uniquely idiosyncratic and challenging. SMAC is different from much previous

work in reinforcement learning using StarCraft II, which has focused on single-agent

reinforcement learning focusing on playing the full game from the point of view of

a single human player [8, 11, 12]. Although there has been sporadic work to apply

StarCraft II to MARL research [13, 14, 15, 16, 17, 18, 19, 20], SMAC is the first

concerted effort to create a standardized test suite to systematically drive this research

domain forward. Despite its value to the field in its existing form, SMAC has some

2https://bit.ly/3T20aXu

https://bit.ly/3T20aXu
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weaknesses. It is cumbersome to install as it requires the full game of StarCraft II due

to its use of the StarCraft II Learning Environment (SC2LE3) [21] to create and control

the game environment. Moreover, due to this dependency, it is slow to run, particularly

as training MARL algorithms typically require millions of game-play experiences. This

limits the use of SMAC to well-funded research groups who can afford the expensive

computing resources required to use SMAC in practice. As SMAC is quickly becoming

a common benchmark for MARL research [22, 23, 24, 25, 26], this excludes many

researchers and research groups who do not have access to these resources.

This project introduces SMAC-lite, a lightweight alternative to the SMAC frame-

work. In particular, we create a MARL test environment loosely based on the SMAC

5m vs 6m mini-challenge. We show that SMAC-lite is a functionally valid replace-

ment for the 5m vs 6m mini-challenge with significantly faster execution times. We

achieve this by creating a new MARL environment from scratch using the Griddly

[27] framework driven by the EPyMARL [28]. Our implementation also removes the

any dependency on StarCraft II, allowing us to greatly reduce the installation footprint

of SMAC-lite compared to SMAC. Although we only provide a single environment

compared to SMAC’s plethora of mini-challenges, we show it is possible to reap the

benefits of the 5m vs 6m mini-challenge using less powerful computing resources whilst

also reducing its installation footprint. SMAC-lite aims to lay the groundwork required

to make standardized MARL benchmarks accessible to more researchers working in

this field. With this project, we aim to introduce a more computationally accessible

MARL test environment which can easily be extended to include more mini-challenges

from SMAC and beyond.

3github.com/deepmind/pysc2

github.com/deepmind/pysc2


Chapter 2

Background and Motivation

2.1 StarCraft II and SMAC

StarCraft II1 is a military science-fiction video game published by Blizzard Entertain-

ment. The game comprises individuals or teams of individuals competing against

each other or a built-in handcrafted AI to manage resources and win battles. Players

must play as one of three ‘races’ - Protoss2, Terran3 or Zerg4. This is one of the most

interesting aspects of the game, as the races are very well-balanced but require totally

different strategies to play effectively [9]. All units in the game belong to one of these

races. SMAC’s 5m vs 6m mini-challenge, which SMAC-lite is based on, is composed of

two teams of Marines5, the basic infantry units of the Terran race. Another interesting

aspect of StarCraft II is the strategic considerations required to play different aspects of

the game. These can be be divided into two distinct areas.

• Macromanagement (macro): This encompasses high-level, economic and long-

term strategic considerations such as creating and managing infrastructure, build-

ing armies and expanding territory.

• Micromanagement (micro): This covers low-level control of units or teams of

units to determine where they should move, if they should attack or retreat, etc.

Players with good micro strategy tend to have units with longer lifespans.

These are both interesting aspects of the game that must be considered in order
1starcraft2.com
2starcraft.fandom.com/wiki/Protoss
3starcraft.fandom.com/wiki/Terran
4starcraft.fandom.com/wiki/Zerg
5starcraft.fandom.com/wiki/Marine_(StarCraft_II)

4

starcraft2.com
starcraft.fandom.com/wiki/Protoss
starcraft.fandom.com/wiki/Terran
starcraft.fandom.com/wiki/Zerg
starcraft.fandom.com/wiki/Marine_(StarCraft_II)
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Figure 2.1: A screenshot of SMAC’s rendering of the 5m vs 6m mini-challenge during

training. The graphics used are the same as in the full game of StarCraft II. This depicts

a team of enemy Marines firing on the agent team of Marines.

to effectively play the full-game of StarCraft II. However, the focus of SMAC and

SMAC-lite is only on micro, as this is more amenable to being modelled as a MARL

problem. Moreover, this allows the two to be compared.

StarCraft II has been shown to be an excellent test environment for reinforcement

learning [9]. This is partly due to its enormous number of states [9], which far exceed

those of traditional reinforcement learning test environments such as chess [29] and

backgammon [30]. Consequently, StarCraft II has been well studied in the context of

this field. Much of this research has focused on playing the full game of StarCraft II

from the perspective of a single human player [8, 11, 12], framing the game as a single-

agent reinforcement learning problem with an emphasis on macro strategy. In recent

years, the crowning achievement of this stream of research has been AlphaStar [8],

which has beaten 99.8% of human players to attain Grandmaster rank in the game. This

is a significant achievement, as StarCraft II is hugely popular with a high skill ceiling,

with its professional e-sports leagues being a lucrative source of income for many top

human players. As impressive as this is, single-agent reinforcement learning is not

suitable for modelling many real-world challenges, as many are inherently multi-agent

in nature. Additionally, most real-world problem settings have noisy input channels

where all agents may only have access to a small amount of information from the

environment but must still learn to coordinate effectively [10].

The StarCraft Multi-Agent Challenge (SMAC) [10] is a framework designed to
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leverage the StarCraft II game environment for MARL research. It is written using the

SC2LE and PySC2 frameworks6 [21], which are designed to allow easy interfacing

with the StarCraft II game engine. SMAC is runnable via PyMARL7 [10], an open-

source framework that has been released alongside SMAC to drive MARL experiments

using SMAC as a training environment. Although there has been sporadic work to use

StarCraft II as an environment for MARL [13, 14, 15, 16, 17, 18, 19, 20], SMAC is

the first concerted effort to create a standardized test-bed to drive this field forward

[10]. SMAC consists of a set of mini-challenges focusing purely on micro strategy

and therefore distinct from the full StarCraft II game. Each mini-challenge consists

of two teams of units in various configurations attempting to win by eliminating all

units belonging to the opposing the team. The ‘friendly’ team is controlled using

MARL algorithms while the enemy team is controlled by StarCraft II’s handcrafted

game AI. Each mini-challenge has its own challenges and idiosyncrasies and provides a

qualitatively challenging environment for MARL research [10].

Due to its qualities, SMAC has been growing in popularity in MARL literature as a

metric for benchmarking MARL algorithms [22, 23, 24, 25, 26]. Despite its efficacy as

a test environment, SMAC has some issues that make it challenging to use in practice.

Due to its dependence on the StarCraft II game engine, SMAC requires installation of

the full game of StarCraft II. Although the process of installing the game is easy, it is

undesirable as it requires around 30 gigabytes of disk space 8 despite SMAC using only

a small portion of the game logic.

More importantly, it is computationally demanding, as StarCraft II is a complex

game with many underlying processes and graphically intensive game rendering. The

intrinsic coupling between SMAC and the StarCraft II game logic means that it

is slow compared to many other MARL environments, such as those provided by

pettingzoo[31]9. Furthermore, reinforcement learning models typically need to be

trained over millions of game-play experiences, which in the case of SMAC, is im-

practical without expensive high-performance computer hardware. This limits MARL

research with SMAC to well-funded research groups who can afford the required hard-

ware. As SMAC is now considered a standard benchmark in this domain [32], its

demanding computational requirements exclude many researchers and research groups

from utilizing it. SMAC-lite aims to provide a fast lightweight alternative to SMAC

6github.com/deepmind/pysc2
7github.com/oxwhirl/pymarl
8us.battle.net/support/en/article/27575
9pettingzoo.ml/envs

github.com/deepmind/pysc2
github.com/oxwhirl/pymarl
us.battle.net/support/en/article/27575
pettingzoo.ml/envs
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by removing all dependencies on StarCraft II. It provides a single MARL environment

loosely based on the 5m vs 6m mini-challenge from SMAC, built with Griddly and

usable via EPyMARL.

2.2 Griddly and EPyMARL

Griddly [27]10 is a open-source library designed for building reinforcement learning

environments. It provides a YAML 11 based configuration specification called GDY

(Game Driven YAML), which can be used to define a complete game environment,

including objects, their behaviours and how they interact with other objects in the

environment. The ability to define and alter game environments by only making

configuration changes allows for rapid prototyping and iteration of game environments.

In addition to this, Griddly’s underlying game engine is written entirely in C++, using

the Vulkan SDK12 to render observational states in the game. The result of this is a

game engine that is fast, lightweight and able to render some games at more than 30,000

frames per second [27]. In contrast, the frame rate for StarCraft II is capped at 60

frames per second13.

Griddly is well-suited to our use-case for several reasons. It is easy to learn, easy

to install and very fast. Moreover, it has been designed specifically for reinforcement

learning research and offers features such as partial observability and reward allocation

out-of-the-box, reducing the software development overhead for research.

Our Griddly environment is driven using EPyMARL14 [28], a MARL framework

derived from PyMARL15 [10], but with some additional features. It provides several out-

of-the-box implementations of modern MARL algorithms, as well as a robust framework

to run, manage and record experiment results. We chose EPyMARL over PyMARL as

it implements additional MARL environments (Level-Based Foraging [33, 34]16 and

Multi-Robot Warehouse17), allowing us to adapt their existing implementations for our

use-case.
10griddly.readthedocs.io/en/latest/index.html
11yaml.org
12vulkan.org
13us.battle.net/support/en/article/141374
14github.com/uoe-agents/epymarl
15github.com/oxwhirl/pymarl
16https://github.com/uoe-agents/lb-foraging
17https://github.com/uoe-agents/robotic-warehouse

griddly.readthedocs.io/en/latest/index.html
yaml.org
vulkan.org
us.battle.net/support/en/article/141374
github.com/uoe-agents/epymarl
github.com/oxwhirl/pymarl
https://github.com/uoe-agents/lb-foraging
https://github.com/uoe-agents/robotic-warehouse
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Figure 2.2: A high-level architecture diagram showing the various components of the

Griddly framework. [27]

2.3 Multi-agent reinforcement learning (MARL)

As discussed previously, multi-agent reinforcement learning (MARL) is an area of

research in reinforcement learning that studies problems where multiple independent

agents share a common environment. In a MARL problem setting, the aim of each agent

is to maximize its own long-term reward by interacting with the environment and the

other agents [35]. MARL problems can be fully cooperative, where all the agents must

learn to work together to maximize a common reward. An example of such a problem

might be a team of robot warehouse workers who must coordinate and work together

to minimize stock delivery times. In contrast, fully competitive MARL problems are

such that the agents are competing against each other to maximize their own goals,

which are often conflicting. As a result, many fully competitive MARL problems are

zero-sum, which means the total rewards of the agents sum to zero [35]. An example of

a fully-competitive problem might be many agents trading on a stock exchange, with

each striving to maximize their own gain at the expense of the other agents. Many

real-world MARL problems do not necessarily conform to these categorizations and

are a mix of the two.

There are numerous benefits to framing reinforcement learning problems as MARL
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problems. Due to their decentralized nature, MARL systems are much more robust

compared to their single-agent counterparts [36]. If an agent fails in a MARL system,

the remaining agents can pick up the slack [36]. Moreover, agents can easily be added

and removed from a system, allowing for highly flexible scalable systems [36]. MARL

systems are also easier to run in parallel on computer hardware, which can lead to

significant performance advantages over single-agent systems [36]. Agents in MARL

task settings can also help each other learn via experience sharing [36]. More ‘skilled’

agents can serve as teachers for other agents [37] or agents can learn by imitating more

skilled agents [38].

Naturally, there are also certain challenges that must be considered when working

with MARL. One that is unique to MARL is non-stationarity. In multi-agent settings,

the environment is constantly modified by the actions of agents, so from the perspective

of a single agent, the environment is not stationary. Each agent is effectively faced

with a moving-target problem where its best policy18 is not static and is constantly

influenced by all the other agents [36]. This violates the Markov property, which

says that the state of the environment must encapsulate all aspects of the past agent-

environment interactions and is intrinsic to the convergence properties of many single-

agent reinforcement learning approaches [1]. Our chosen benchmarking algorithms,

IQL [39] and QMIX [40], have different approaches to deal with non-stationarity.

Another challenge which pervades all of reinforcement learning is partial observability.

Most real-world data sources and data input streams are faulty, imperfect or fail to

capture important information about an environment [10]. For example, an agent in a

football team has a limited view of the football pitch at any given time but must still

learn to coordinate with the whole team in order to win a game. Although there are

approaches available to mitigate these problems [41], dealing with partial observability

is an active and important area of research.

The focus of SMAC-lite, like SMAC, is on partially observable fully cooperative

MARL problems. In research literature, these are known as Dec-POMDPs [41]. This is

an important sub-field of MARL research with important real-world applications. Like

SMAC, SMAC-lite aims to lay the groundwork for standardized benchmarks to drive

Dec-POMDP research forward, albeit with smaller computational overheads. For more

information about Dec-POMDPs, we refer the reader to [41].

In order to compare SMAC-lite and SMAC, we have chosen to use the IQL [39]

18A policy is a function that defines a probability distribution over all the possible actions given a state
[1].
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and QMIX [40] algorithms. These have been selected as they use different learning

paradigms and therefore allow us to gain some understanding on how this affects

performance between these environments. In addition to this, we use both algorithms

to benchmark both SMAC and SMAC-lite, allowing us to understand the suitability of

SMAC-lite as functional alternative to SMAC.

• IQL [39] : IQL uses independent learning, where each agent learns a decen-

tralized state-action value function that is conditioned only on the actions and

observations of each individual agent. Consequently, each agent treats all other

agents as part of the environment.

• QMIX [40] : Compared to IQL, QMIX is more sophisticated. It uses centralised

training with decentralised execution, where agents are allowed a view of the

whole environment during training, but must condition their policies only on local

observations. It uses the approach of value decomposition [42] to break down the

joint state-action value function of all agents into individual state-action values

per agent.

2.4 Related Work

As StarCraft II has been shown to be an excellent test environment for reinforcement

learning [9], there have been several efforts to apply it to this purpose. Much of this work

focuses on macro strategy, using single-agent reinforcement learning to play the full

game from the perspective of a human player [8, 11, 12]. Although there has also been

sporadic work to use the game in MARL environments [13, 14, 15, 16, 17, 18, 19, 20],

there has been a clear absence of any standardized benchmarking framework that can

decisively be used to compare MARL algorithms. SMAC is the first framework with the

explicit aim of providing such a tool. In contrast to previous work applying single-agent

reinforcement learning to StarCraft II, SMAC uses the rich environment dynamics

of the game to create a new set of mini-challenges. Despite SMAC becoming well

established as a standard benchmark in MARL literature [32, 22, 23, 24, 25, 26, 28],

to our knowledge, there has not been any concerted effort into optimizing it to be less

computationally demanding, and therefore, accessible to more researchers.

However, outside of the realm of StarCraft II, there have been other efforts to

standardize testing in MARL. The Japanese video game Bomberman19 has been used
19www.konami.com/games/bomberman

www.konami.com/games/bomberman
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as the basis for a MARL test environment [43], also with multiple mini-challenges

facilitating both cooperative and competitive MARL. However, Bomberman lacks the

rich environment dynamics of StarCraft II [10] and is therefore a less challenging test-

bed. Simulated robot football is a game which has also been used for fully-cooperative

MARL research in the past. This type of environment uses simple physics to simulate a

game of football, where a team of agents aim to maximize their rewards by working

together to keep possession of a football within a designated area while simultaneously

stopping an enemy team stealing from it. This started with Keepaway soccer [44],

built on top of RoboCup [45], which later evolved into the more challenging Half

Field Offensive task [46, 47] requiring agents to score goals in addition to the standard

Keepaway soccer behaviour. Despite the value of robot football as a MARL test

environment, it lacks the diversity of the mini-challenges presented by SMAC, which is

better suited to test the performance of MARL algorithms in many differing scenarios.

More recently, there have been efforts to introduce more MARL test scenarios driven

by the EPyMARL framework [28]. These include the Level-Based Foraging game [48]

and RWARE [28]. However, these environments also lack the diversity of SMAC.

In general, most research around MARL test environments are one-off toy problems

with limited usage, making it hard to meaningfully measure performance between

different works of research [10]. SMAC is the first standardized benchmark in this field

to provide a diverse set of challenges for Dec-POMDPs, and with SMAC-lite, we aim

to lay the foundations of a more efficient version of SMAC.



Chapter 3

SMAC-lite

3.1 Initial Approach

Our initial efforts to create a more lightweight version of SMAC ultimately proved un-

fruitful. In order to understand exactly what the computationally demanding aspects of

SMAC are, we use a popular profiling library called py-spy1 to dissect its performance.

Profilers allow software engineers and researchers to understand which components

of a program take the largest proportion of time to execute by repeatedly sampling its

process. py-spy is well-suited for our purposes as it has a very low-overhead and runs

in a process independent of the process it is profiling, therefore not influencing the

results.

Our profiling results can be seen in Figure 3.1. This shows a flame-graph2 which

can be used to visualize how much time SMAC spends running different functions as

part of its execution. This is the flame-graph for training the QMIX [40] algorithm

on the 5m vs 6m scenario. The vertical axis represents the call-stack of the program

and the horizontal axis represents the program executing through time. Accordingly,

the horizontal bars at the top of the graph represent high-level function calls and bars

below them represent their subroutines. From Figure 3.1, we can see that a significant

proportion of time is spent inside the function at line 69 in episode runner.py. In the

PyMARL code-base used to run SMAC, this corresponds to the function that applies

the algorithm’s predicted actions to the game environment, computes the resulting

observations and renders these observations in the form shown in Figure 2.1. From

Figure 3.1, we can see that this function call takes up almost half of the program’s time

1github.com/benfred/py-spy
2brendangregg.com/FlameGraphs/cpuflamegraphs.html

12

github.com/benfred/py-spy
brendangregg.com/FlameGraphs/cpuflamegraphs.html
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Figure 3.1: The output of py-spy when used to profile a training run on the 5m vs 6m

SMAC mini-challenge. The vertical axis shows the call stack and the horizontal axis

shows the program executing through time. Each horizontally oriented block represents

time spent in a function call.

during training. This is surprising as one would expect the game environment itself to

take a small proportion of the overall time compared to the QMIX training algorithm,

which uses computationally intensive deep learning subroutines as part of its operation.

Based on this information, we hypothesized that the slow execution of the envi-

ronment is due to the rendering of the observational states of the game. One of the

most computationally expensive aspects of video game execution in general is graphical

rendering of in-game lighting [49], which led us to this hypothesis, as StarCraft II

is designed to have rich lighting effects using a sophisticated shader framework [50].

While realistic lighting is conducive to an enjoyable game-play experience, it is highly

unnecessary in the context of reinforcement learning, where efficiency of the environ-

ment takes precedence over the rendering of observational states. Given that the game

logic and rendering in SMAC occur within the SC2LE game engine [21], we started

investigating the feasibility of refactoring this code-base in order to separate these two

components. Our proposed transformation would theoretically allow us to construct

a bespoke efficient and lightweight module to render the environment’s observational

states. This design change is conveyed by Figure 3.2. It would have allowed us to

replace the StarCraft II graphics engine, which is superfluous for MARL research, with

a much simpler and faster rendering engine which would utilize the raw outputs from the

newly refactored game logic component. This approach would have had many benefits.

The modularity of the refactored SC2LE engine would allow easy experimentation with

different rendering engines without any changes required to the decoupled StarCraft II
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Figure 3.2: The figure on the left is a high-level architecture diagram showing the design

of SMAC. The figure on the right shows our initial proposal for SMAC-lite.

game logic. Moreover, specifying and documenting an interface between the StarCraft

II game logic and the rendering engine would allow independent iteration on the game

logic component and the game rendering component. This design change would have

also allowed us to easily port all the SMAC mini-challenge environments to use a more

efficient rendering engine, instead of just focusing on a particular mini-challenge.

However, upon further investigation, this approach ultimately proved to be infeasible.

SC2LE provides an interface to drive StarCraft II with code, but does not control the

game logic nor the rendering. It uses a streaming websocket3 connection to act as an

intermediary layer of communication between SMAC and the full StarCraft II game, the

latter of which encapsulates all the game logic and rendering. This would have moved

our refactoring approach downstream to the StarCraft II code-base. Notwithstanding

the difficulty of such an endeavour in the time afforded for this project, modification

of StarCraft II is strictly prohibited under the End User License Agreement (EULA) 4

from Blizzard.

In addition to this, we discovered that the Linux client for StarCraft II, which has

been developed by Blizzard especially for machine learning research [21], has no

rendering functionality. As Linux is the dominant platform used to conduct machine

learning research, most users of SMAC would likely not be specifically affected by the

computational overhead of StarCraft II rendering. These factors prompted us to seek

out other approaches to optimize SMAC.

3.2 Griddly Approach

Our final SMAC environment has been written using Griddly [27] and is runnable via

EPyMARL [28]. Griddly exposes its environments using wrappers from OpenAI’s Gym
3developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
4www.blizzard.com/en-us/legal/fba4d00f-c7e4-4883-b8b9-1b4500a402ea/

blizzard-end-user-license-agreement

developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
www.blizzard.com/en-us/legal/fba4d00f-c7e4-4883-b8b9-1b4500a402ea/blizzard-end-user-license-agreement
www.blizzard.com/en-us/legal/fba4d00f-c7e4-4883-b8b9-1b4500a402ea/blizzard-end-user-license-agreement
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framework 5, a standard software development paradigm in reinforcement learning

research, allowing us to successfully integrate our Griddly SMAC-lite environment

with EPyMARL. This integration is key to the fairness of our experiments, as both the

SMAC and SMAC-lite experiments use shared libraries to execute all our experiments.

3.2.1 Game Environment

SMAC-lite consists of a single environment based on the 5m vs 6m mini-challenge from

SMAC. This mini-challenge consists of two teams of Marines competing to win a game

by eliminating all units in the opposing team. Each game can be considered to be an

episode6, which ends when one of the teams is eliminated or the maximum number of

time-steps is reached and the game times out. The agent team is considered to have

won the game only if the enemy team is eliminated before the game times out.

5m vs 6m has been chosen as the environment to base SMAC-lite on. The SMAC

authors classify the SMAC mini-challenges with three difficulty ratings - Easy, Hard

and Super-Hard. They report that QMIX, the general best performer from their

benchmarking results, achieves an impressive 95% test win rate on all Easy scenarios

[10]. They also report that it makes meagre gains on Super-Hard scenarios [10].

Therefore, the Hard category stands out as a natural choice from which to select a

mini-challenge to model SMAC-lite after. In particular, we initially selected 5m vs 6m

as all units in this scenario are identical and have identical action spaces. Although

the final version of SMAC-lite does not conform to this, this significantly minimized

complexity in the environment and aided with debugging in the early stages of the

project. Figure 3.3 shows a side-by-side view of SMAC-lite and 5m vs 6m from SMAC.

The final form of SMAC-lite differs from 5m vs 6m in terms of the behaviour of the

enemy units. In 5m vs 6m, both teams consist of Marine units who shoot each other

when they are within range. While friendly units can shoot in SMAC-lite, enemy units

must instead chase down friendly units and eliminate them by coming into direct contact

with them. Although this behaviour differs from 5m vs 6m and somewhat detracts from

the asymmetric aspect of the original mini-challenge, our aim is to compensate for this

by inducing interesting behaviours such as ‘kiting’7, which is a mainstay in human

micro-strategy.

5www.gymlibrary.ml/content/wrappers/
6In reinforcement learning, an episode is the full sequence of states, actions and rewards between the

start state (beginning of the game) and the terminal state (win, loss or time-out).
7liquipedia.net/starcraft2/Kiting

www.gymlibrary.ml/content/wrappers/
liquipedia.net/starcraft2/Kiting
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Figure 3.3: The screenshot on the left is a screenshot of the SMAC-lite environment

under isometric rendering. The one on the right is the original 5m vs 6m environment

from SMAC.

In 5m vs 6m, enemy units are controlled by StarCraft II’s handcrafted AI, with the

majority of their behaviours consisting of chasing and firing on the agent units when

they come within range. They also have a fixed amount of health that must be depleted

before they are eliminated from the game. Enemy units in SMAC-lite also exhibit

this behaviour as they also have a fixed amount of health. However, there are larger

differences in the general behaviour of enemy units between 5m vs 6m and SMAC-lite.

In 5m vs 6m, the behaviour of units is controlled by the handcrafted AI built into the

StarCraft II game logic. As we are strictly prohibited from reverse engineering or

creating a derivative work from StarCraft II due to Blizzard’s EULA, which includes

the behaviour of the enemy units, we instead use a simple heuristic. This heuristic is

the A* search algorithm, a path-finding algorithm to find the shortest path between a

source and target object. The source object in SMAC-lite is each enemy unit which

is programmed to move towards the target object. The target object is nearest MARL

controlled friendly agent unit. Although this is a simple heuristic compared to StarCraft

II’s handcrafted AI, it is highly suitable for SMAC-lite’s use-case as it is very fast

[51]. A* is the most popular path-finding algorithm used in game environments, with

much work having gone into optimizing its performance [51]. Moreover, it has been

shown to be optimal for path-finding problems with a single target object [51]. For

more information on the A* algorithm and its application in game environments, we

direct the reader to [51].
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3.2.2 Rendering

The rendering of observational states in a reinforcement learning environment is an

invaluable amenity, allowing visualization of the environment for purposes such as

debugging and observing interesting behaviours. Griddly provides several out-of-the-

box rendering modes for its environments, which can be used to specify the visual

richness of the rendered states.

• Isometric: This is the graphically richest rendering supported by Griddly. The

game arena is displayed from a wide-angle camera view, giving the 2-dimensional

space the impression of a 3-dimensional space. Figure 3.4 shows SMAC-lite

rendered in isometric mode. This mode requires sprites8 to represent the objects

in the environment. The sprites used for SMAC-lite are derived from the Griddly

repository9.

• Sprite 2D: This rendering mode is similar to isometric mode but with the camera

view from directly above the game arena, showing an unambiguous 2-dimensional

space. Sprites are also required for this type of rendering. Sprite 2D rendering

has not been implemented for SMAC-lite, as it is not sufficiently different from

Block 2D rendering.

• Block 2D: This type of rendering is similar to Sprite 2D rendering, but the sprites

specified must be simple 2-dimensional shapes. Figure 3.5 shows an example of

this for SMAC-lite.

• Vector: This is the simplest and fastest rendering mode supported by Griddly.

Each object is represented as unit squares with different colours and does not

require any sprites or shapes to be specified. Figure 3.5 also shows an example of

this. The friendly units are orange and enemy units are green.

Although Griddly rendering is highly efficient compared to StarCraft II, we disable

rendering for our experiments in order to ensure fair training time comparisons between

SMAC and SMAC-lite, as SMAC also disables rendering during training on the Linux

platform.

8In computer graphics, a sprite is an image used to represent objects. Friendly agent units are
represented with floating jelly objects and enemy units are represented with gnomes.

9github.com/Bam4d/Griddly

github.com/Bam4d/Griddly
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Figure 3.4: SMAC-lite rendering in isometric mode in Griddly.

Figure 3.5: SMAC-lite rendering in Block 2D and vector modes on the left and right

respectively.
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3.2.3 Action Space

The action space for agents in SMAC-lite is discrete, comprising of either moving or

firing in one of the four cardinal directions. Eliminated agents cannot take any actions.

This is equivalent to the action space in 5m vs 6m in SMAC. Furthermore, like 5m vs 6m

and SMAC in general, projectiles fired by SMAC-lite agents have a range that is lower

than each agent’s partially observable view. This helps to induce human-like game-play

by encouraging agents to move before firing on the enemy units [10]. In SMAC-lite,

there is added complexity in this regard as agents must learn to move away from enemy

units whilst staying within firing range. Projectiles fired by agent units in SMAC-lite

have a range of 6 units while the agents partially observable space is 10 by 10 units.

3.2.4 Observation Space

In addition to a global observation space, SMAC-lite also supports a partial observation

space for each agent. This is essential to impactful MARL research, as most practical

MARL problems are partially observable [10]. As stated previously, SMAC-lite uses

a 10 by 10 observation space for each agent with each agent at the centre of its space.

This value has been chosen such that the observation space for each agent is adequately

large compared to their firing range. This is illustrated in Figure 3.6. This facilitates the

use of the centralized training with decentralized execution training regime.

SMAC-lite uses the default observation space provided by Griddly10. This consists

of a separate one-hot encoded vector of the game arena for agent units, their projectiles

and enemy units (three vectors in total). On the other hand, SMAC uses a handcrafted

observation space, with some elements of the feature vector consisting of StarCraft II

specific attributes such as shield and unit type. Although Marines have shields in

StarCraft II, they have not been implemented in SMAC-lite agent units, as enemy units

are programmed to eliminate friendly units on contact. Unit type is not applicable to

SMAC-lite, as all there are only two types of units and this information is represented in

Griddly’s default observation space format. Given the irrelevance of some components

of SMAC’s handcrafted observation space to SMAC-lite, we choose to use Griddly’s

default observation space as it represents a complete view of SMAC-lite’s observation

space.

10griddly.readthedocs.io/en/latest/getting-started/observation%20spaces/index.
html

griddly.readthedocs.io/en/latest/getting-started/observation%20spaces/index.html
griddly.readthedocs.io/en/latest/getting-started/observation%20spaces/index.html
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Figure 3.6: A series of windows illustrating partial observability in SMAC-lite. The window

on the top left corner is the global observation space and the other windows show the

observation space for each of the five agents.

3.2.5 Reward

The reward functions for SMAC and SMAC-lite are almost identical. We use a variation

of the shaped reward function specified in SMAC [10], as this is the default reward

function and is used in our 5m vs 6m experiments. SMAC and SMAC-lite award 10

points for each eliminated enemy unit and 200 points for each game that is won. Both

award hit-point damage. SMAC awards hit-point damage computed with a complex

function which accounts for enemy and friendly unit shields and health. SMAC-lite

awards 1 point each time an enemy unit is hit with a projectile.

In addition to this, SMAC-lite awards -10 and -200 for each eliminated agent unit

and for losing a game respectively. This encourages agents to avoid being eliminated

and ultimately to win games. This has been added to compensate for a lack of complex

hit-point reward function in SMAC-lite.
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Experiments, Results and Analysis

4.1 Experiment Setup

The purpose of our experiments is to understand the properties of SMAC-lite compared

to SMAC’s 5m vs 6m mini-challenge, in order to conclude if it can be considered a

suitable alternative to 5m vs 6m. We devise the experiments based on specific criteria

that must be satisfied in order for this to be the case.

• MARL Benchmark Experiment: This experiment tests the performance of IQL

and QMIX between SMAC and SMAC-lite. The relative performance of these

algorithms between both environments should be the same in order to conclude

SMAC-lite can be used an alternative to 5m vs 6m. This tests the criteria that the

two environments can be used interchangeably. We train both IQL and QMIX

on both environments with the default PyMARL parameters as recommended

by SMAC authors [10]. We report the median test win rate as our evaluation

metric as this is recommended by the SMAC authors [10]. The test win rate is

the proportion of times the agent team wins the game out of the total number

of games played over a fixed number of training time-steps. This evaluation

procedure is conducted at fixed regular intervals during training.

• Timing Experiment: This experiment tests the assertion that the SMAC-lite

environment is faster to train with compared to the 5m vs 6m mini-challenge

environment. This is the primary aim of this project and the second criteria

that must be satisfied in order to justify SMAC-lite as an alternative to SMAC.

This is evaluated by comparing the mean wall-clock time taken for SMAC and

SMAC-lite to execute on the QMIX and IQL algorithms for a fixed number of

21
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time-steps.

We run both experiments using identical sets of hyperparameter values. These are

the parameters specified in PyMARL and recommended by the SMAC authors [10].

4.1.0.1 Training Architecture and Hyperparameters

All agent networks use a deep recurrent Q-network made up of gated recurrent units

with a 64 dimensional hidden state with a single fully connected hidden layer before

and after the hidden layer. This is similar to the network proposed in [52]. The loss

function used for training is root mean squared propagation (RMSProp), trained with a

learning rate of 5×10−4. All MARL algorithms are trained for approximately 2 million

time-steps with a 100 time-step limit for each episode (the game timeout). Exploration

is performed using ε-greedy action selection on each agent’s own output. The value of

ε is annealed from 1.0 to 0.05 over 20,000 time-steps and then fixed for the rest of the

training schedule. The value of the discount factor γ is fixed to 0.99.

Our evaluation procedure is similar to that of [16] and SMAC [10]. Every 10,000

timesteps, we pause training and run 32 test episodes where agents greedily select

actions with a decentralized mechanism. The proportion of times the agents win the

game is reported as the test win rate.

Each set of experiments for the MARL benchmark experiment is run 10 independent

times for statistical significance. We use the median test win rate to exclude outliers,

as reinforcement learning experiments are known to have notoriously high variance

[53]. For the timing experiment, we use the obvious choice of wall-clock time as our

metric, as we are primarily interested in understanding if, given identical hardware and

hyperparameters, SMAC-lite executes faster than SMAC. We conduct 5 independent

training runs for each experiment set in the timing experiment. We choose this number

to balance time constraints against statistical significance.

4.1.0.2 Experiment Hardware

All experiments for this project have been executed on Google Cloud computing

infrastructure. For the MARL benchmark experiment, we run our experiments on a

single NVIDIA Tesla P100 GPU on a Linux server with 16 CPU cores. For the timing

experiment, we use a Linux server with 16 CPU cores without a GPU. We omit the

GPU to reflect timings under more common hardware specifications. Although we use

a large number of CPU cores for each training run in the timing experiment, this is
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close to the number of CPU cores found in many high specification laptops1 designed

for software development and research.

4.2 Results and Analysis

4.2.1 MARL Benchmark Experiment

Figure 4.1 and Figure 4.2 track the test win rate over 2 million training time-steps for

5m vs 6m and SMAC-lite respectively. QMIX outperforms IQL in both environments.

This is perhaps unsurprising, as QMIX uses the centralized training with de-centralized

training paradigm, allowing it to reason more adeptly over joint information from

multiple agents [28]. It is interesting to note that the difference in performance between

QMIX and IQL is greater for SMAC compared to SMAC-lite. This is difference is most

likely due to differences between the 5m vs 6m and SMAC-lite environments, as other

variables are fixed between both experiments. IQL, in particular, performs significantly

better on the SMAC-lite environment. This may imply that IQL is particularly well-

suited to SMAC-lite. Although it uses a naı̈ve approach to MARL compared to QMIX,

IQL has been shown to be a surprisingly strong benchmark in many MARL scenarios

[54, 55]. Furthermore, QMIX performs more strongly on 5m vs 6m compared to SMAC-

lite. This could be attributed to the differences in environment dynamics between

SMAC and 5m vs 6m, particularly the behaviour of the enemy units, as this is where the

environments diverge the most. However, both analyses on the relative strength of IQL

and weakness of QMIX in SMAC-lite compared to SMAC is inconclusive and requires

further investigation.

In general, SMAC-lite satisfies the functionality criteria for the MARL benchmark

experiment, as it is qualitatively equivalent to SMAC in its performance rankings of

our MARL benchmarking algorithms. In this regard, we can conclude SMAC-lite is a

functionally suitable alternative to SMAC.

4.2.2 Timing Experiment

Table 4.1 shows the wall-clock timing statistics for the training times on both environ-

ments using both MARL algorithms. It shows that given identical hyperparameters,

including total number of time-steps, SMAC-lite is significantly faster compared to

1ultrabookreview.com/20056-core-i9-portable-laptops

ultrabookreview.com/20056-core-i9-portable-laptops
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Figure 4.1: This is the median test win rate percentage plotted against the experiment

time-steps for the 5m vs 6m SMAC environment for IQL and QMIX.

Figure 4.2: This is the median test win rate percentage plotted against the experiment

time-steps for the SMAC-lite environment for IQL and QMIX.
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5m vs 6m (SMAC) SMAC-lite

QMIX

Mean 5:59:59 3:29:57

Median 6:04:16 3:31:25

Max. 6:10:52 3:39:32

Min. 5:40:06 3:13:43

IQL

Mean 5:59:12 2:28:27

Median 5:59:45 2:28:09

Max. 6:05:20 2:31:41

Min. 5:52:30 2:26:49

Table 4.1: This table lists the wall-clock time for training both the SMAC 5m vs 6m

and SMAC-lite environments on both QMIX and IQL. Timings are listed in the format

Hours:Minutes:Seconds and are rounded to the nearest second. For example, the

mean time taken to train QMIX on the 5m vs 6m environment is 5 hours, 59 minutes and

59 seconds.

SMAC. This satisfies our second criteria to designate SMAC-lite as a suitable replace-

ment for 5m vs 6m. Specifically, on mean average, SMAC-lite is around 1.7× faster

on QMIX and around 2.4× faster on IQL compared to SMAC. These are significant

improvements on SMAC, and definitively shows SMAC-lite is a more computationally

efficient test environment compared to SMAC.



Chapter 5

Conclusion and Further Work

This paper presents SMAC-lite, a new environment based on SMAC’s 5m vs 6m mini-

challenge for testing MARL algorithms oriented towards Dec-POMDPs. We motivate

the need for SMAC-lite by highlighting its similarities and differences with SMAC.

Following on from this, we devise experiments that allow us to reason about SMAC-lite

and its relationship to 5m vs 6m. We conclude SMAC-lite is a suitable alternative to

5m vs 6m by showing that it is functionally similar to 5m vs 6m, as the performance

rankings of the IQL and QMIX algorithms are preserved between the two. Moreover,

we show that SMAC-lite is significantly faster compared to 5m vs 6m.

With this work, we aim to introduce a MARL test environment that can be used as a

computationally efficient alternative to 5m vs 6m. In addition to this, we aim to lay the

groundwork for an extensible efficient framework that has the same aims and values as

SMAC, but is usable in practice by more researchers. One of SMAC’s key strengths

is its large suite of mini-challenges, which collectively provide a diversity of easy to

challenging test environments. Despite the fact that SMAC-lite currently consists of a

single environment, we hope it can be extended with further work to include a diverse

set of environments. These environments could be novel or based on existing SMAC

mini-challenges, or be a combination of the two, like SMAC-lite. We also encourage

further work to understand the quantitative effects of differing environment dynamics

between SMAC-lite and 5m vs 6m on the IQL and QMIX algorithms. This would likely

uncover valuable insights into these algorithms and how to best use them.

In general, we have shown that it is possible to reap the benefits of SMAC with

reduced computational resources.

26
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brecht. Comparative evaluation of multi-agent deep reinforcement learning algo-

rithms. CoRR, abs/2006.07869, 2020.

[29] Jonathan Baxter, Andrew Tridgell, and Lex Weaver. Reinforcement learning and

chess. In Machines that learn to play games, pages 91–116. 2001.

[30] Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves

master-level play. Neural computation, 6(2):215–219, 1994.

[31] Justin K. Terry, Benjamin Black, Ananth Hari, Luis S. Santos, Clemens Dief-

fendahl, Niall L. Williams, Yashas Lokesh, Caroline Horsch, and Praveen Ravi.

Pettingzoo: Gym for multi-agent reinforcement learning. CoRR, abs/2009.14471,

2020.

[32] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.

Benchmarking multi-agent deep reinforcement learning algorithms. 2020.

[33] Stefano V Albrecht and Subramanian Ramamoorthy. A game-theoretic model

and best-response learning method for ad hoc coordination in multiagent systems.

arXiv preprint arXiv:1506.01170, 2015.

[34] Stefano V Albrecht and Peter Stone. Reasoning about hypothetical agent be-

haviours and their parameters. arXiv preprint arXiv:1906.11064, 2019.

[35] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learn-
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[36] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent reinforcement

learning: An overview. Innovations in multi-agent systems and applications-1,

pages 183–221, 2010.



Bibliography 31

[37] Jeffery A Clouse. Learning from an automated training agent. In Adaptation and

learning in multiagent systems. Citeseer, 1996.

[38] Bob Price and Craig Boutilier. Accelerating reinforcement learning through

implicit imitation. Journal of Artificial Intelligence Research, 19:569–629, 2003.

[39] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In Proceedings of the tenth international conference on machine learning,

pages 330–337, 1993.

[40] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for

deep multi-agent reinforcement learning. In International conference on machine

learning, pages 4295–4304. PMLR, 2018.

[41] Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized

POMDPs. Springer, 2016.

[42] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-

cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo,

Karl Tuyls, et al. Value-decomposition networks for cooperative multi-agent

learning. arXiv preprint arXiv:1706.05296, 2017.

[43] Cinjon Resnick, Wes Eldridge, David Ha, Denny Britz, Jakob Foerster, Julian To-

gelius, Kyunghyun Cho, and Joan Bruna. Pommerman: A multi-agent playground.

arXiv preprint arXiv:1809.07124, 2018.

[44] Peter Stone, Gregory Kuhlmann, Matthew E Taylor, and Yaxin Liu. Keepaway

soccer: From machine learning testbed to benchmark. In Robot Soccer World Cup,

pages 93–105. Springer, 2005.

[45] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.

Robocup: The robot world cup initiative. In Proceedings of the first international

conference on Autonomous agents, pages 340–347, 1997.

[46] Shivaram Kalyanakrishnan, Yaxin Liu, and Peter Stone. Half field offense in

robocup soccer: A multiagent reinforcement learning case study. In Robot soccer

world cup, pages 72–85. Springer, 2006.



Bibliography 32

[47] Matthew Hausknecht, Prannoy Mupparaju, Sandeep Subramanian, Shivaram

Kalyanakrishnan, and Peter Stone. Half field offense: An environment for multia-

gent learning and ad hoc teamwork. In AAMAS Adaptive Learning Agents (ALA)

Workshop, volume 3. sn, 2016.
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