Publications
For news about publications, follow us on X/Twitter:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
autonomous-drivingsurvey
2024
Anton Kuznietsov, Balint Gyevnar, Cheng Wang, Steven Peters, Stefano V. Albrecht
Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review
arXiv:2402.10086, 2024
Abstract | BibTex | arXiv
autonomous-drivingexplainable-aisurvey
Abstract:
Artificial Intelligence (AI) shows promising applications for the perception and planning tasks in autonomous driving (AD) due to its superior performance compared to conventional methods. However, inscrutable AI systems exacerbate the existing challenge of safety assurance of AD. One way to mitigate this challenge is to utilize explainable AI (XAI) techniques. To this end, we present the first comprehensive systematic literature review of explainable methods for safe and trustworthy AD. We begin by analyzing the requirements for AI in the context of AD, focusing on three key aspects: data, model, and agency. We find that XAI is fundamental to meeting these requirements. Based on this, we explain the sources of explanations in AI and describe a taxonomy of XAI. We then identify five key contributions of XAI for safe and trustworthy AI in AD, which are interpretable design, interpretable surrogate models, interpretable monitoring, auxiliary explanations, and interpretable validation. Finally, we propose a modular framework called SafeX to integrate these contributions, enabling explanation delivery to users while simultaneously ensuring the safety of AI models.
@misc{kuznietsov2024avreview,
title={Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review},
author={Anton Kuznietsov and Balint Gyevnar and Cheng Wang and Steven Peters and Stefano V. Albrecht},
year={2024},
eprint={2402.10086},
archivePrefix={arXiv},
primaryClass={cs.RO}
}
2022
Ibrahim H. Ahmed, Cillian Brewitt, Ignacio Carlucho, Filippos Christianos, Mhairi Dunion, Elliot Fosong, Samuel Garcin, Shangmin Guo, Balint Gyevnar, Trevor McInroe, Georgios Papoudakis, Arrasy Rahman, Lukas Schäfer, Massimiliano Tamborski, Giuseppe Vecchio, Cheng Wang, Stefano V. Albrecht
Deep Reinforcement Learning for Multi-Agent Interaction
AI Communications, 2022
Abstract | BibTex | arXiv | Publisher
AICsurveydeep-rlmulti-agent-rlad-hoc-teamworkagent-modellinggoal-recognitionsecurityexplainable-aiautonomous-driving
Abstract:
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
@article{albrecht2022aic,
author = {Ahmed, Ibrahim H. and Brewitt, Cillian and Carlucho, Ignacio and Christianos, Filippos and Dunion, Mhairi and Fosong, Elliot and Garcin, Samuel and Guo, Shangmin and Gyevnar, Balint and McInroe, Trevor and Papoudakis, Georgios and Rahman, Arrasy and Schäfer, Lukas and Tamborski, Massimiliano and Vecchio, Giuseppe and Wang, Cheng and Albrecht, Stefano V.},
title = {Deep Reinforcement Learning for Multi-Agent Interaction},
journal = {AI Communications, Special Issue on Multi-Agent Systems Research in the UK},
year = {2022}
}
Majd Hawasly, Jonathan Sadeghi, Morris Antonello, Stefano V. Albrecht, John Redford, Subramanian Ramamoorthy
Perspectives on the System-level Design of a Safe Autonomous Driving Stack
AI Communications, 2022
Abstract | BibTex | arXiv | Publisher
AICsurveyautonomous-drivinggoal-recognitionexplainable-ai
Abstract:
Achieving safe and robust autonomy is the key bottleneck on the path towards broader adoption of autonomous vehicles technology. This motivates going beyond extrinsic metrics such as miles between disengagement, and calls for approaches that embody safety by design. In this paper, we address some aspects of this challenge, with emphasis on issues of motion planning and prediction. We do this through description of novel approaches taken to solving selected sub-problems within an autonomous driving stack, in the process introducing the design philosophy being adopted within Five. This includes safe-by-design planning, interpretable as well as verifiable prediction, and modelling of perception errors to enable effective sim-to-real and real-to-sim transfer within the testing pipeline of a realistic autonomous system.
@article{albrecht2022aic,
author = {Majd Hawasly and Jonathan Sadeghi and Morris Antonello and Stefano V. Albrecht and John Redford and Subramanian Ramamoorthy},
title = {Perspectives on the System-level Design of a Safe Autonomous Driving Stack},
journal = {AI Communications, Special Issue on Multi-Agent Systems Research in the UK},
year = {2022}
}