Publications

Follow @UoE_Agents on Twitter

Click on any author names or tags to filter publications.

All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimation

Selected tags (click to remove):
deep-rlArrasy-Rahman

2022

Ibrahim H. Ahmed, Cillian Brewitt, Ignacio Carlucho, Filippos Christianos, Mhairi Dunion, Elliot Fosong, Samuel Garcin, Shangmin Guo, Balint Gyevnar, Trevor McInroe, Georgios Papoudakis, Arrasy Rahman, Lukas Schäfer, Massimiliano Tamborski, Giuseppe Vecchio, Cheng Wang, Stefano V. Albrecht
Deep Reinforcement Learning for Multi-Agent Interaction
AI Communications, 2022
Abstract | BibTex | arXiv | Publisher
AICsurveydeep-rlmulti-agent-rlad-hoc-teamworkagent-modellinggoal-recognitionsecurityexplainable-aiautonomous-driving

Arrasy Rahman, Ignacio Carlucho, Niklas Höpner, Stefano V. Albrecht
A General Learning Framework for Open Ad Hoc Teamwork Using Graph-based Policy Learning
arXiv:2210.05448, 2022
Abstract | BibTex | arXiv
ad-hoc-teamworkdeep-rlagent-modelling

2021

Arrasy Rahman, Niklas Höpner, Filippos Christianos, Stefano V. Albrecht
Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning
International Conference on Machine Learning, 2021
Abstract | BibTex | arXiv | Video | Code
ICMLdeep-rlagent-modellingad-hoc-teamwork

Filippos Christianos, Georgios Papoudakis, Arrasy Rahman, Stefano V. Albrecht
Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing
International Conference on Machine Learning, 2021
Abstract | BibTex | arXiv | Video | Code
ICMLdeep-rlmulti-agent-rl

2020

Arrasy Rahman, Niklas Höpner, Filippos Christianos, Stefano V. Albrecht
Open Ad Hoc Teamwork using Graph-based Policy Learning
arXiv:2006.10412, 2020
Abstract | BibTex | arXiv
deep-rlagent-modellingad-hoc-teamwork

2019

Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, Stefano V. Albrecht
Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement Learning
arXiv:1906.04737, 2019
Abstract | BibTex | arXiv
surveydeep-rlmulti-agent-rl