Publications
For news about publications, follow us on X/Twitter:
Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalgeneralisationsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimationdeep-learningtransfer-learning
Selected tags (click to remove):
Georgios-Papoudakis
2024
Aleksandar Krnjaic, Raul D. Steleac, Jonathan D. Thomas, Georgios Papoudakis, Lukas Schäfer, Andrew Wing Keung To, Kuan-Ho Lao, Murat Cubuktepe, Matthew Haley, Peter Börsting, Stefano V. Albrecht
Scalable Multi-Agent Reinforcement Learning for Warehouse Logistics with Robotic and Human Co-Workers
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2024
Abstract | BibTex | arXiv | Website
IROSmulti-agent-rlsimulator
Abstract:
We envision a warehouse in which dozens of mobile robots and human pickers work together to collect and deliver items within the warehouse. The fundamental problem we tackle, called the order-picking problem, is how these worker agents must coordinate their movement and actions in the warehouse to maximise performance (e.g. order throughput). Established industry methods using heuristic approaches require large engineering efforts to optimise for innately variable warehouse configurations. In contrast, multi-agent reinforcement learning (MARL) can be flexibly applied to diverse warehouse configurations (e.g. size, layout, number/types of workers, item replenishment frequency), as the agents learn through experience how to optimally cooperate with one another. We develop hierarchical MARL algorithms in which a manager assigns goals to worker agents, and the policies of the manager and workers are co-trained toward maximising a global objective (e.g. pick rate). Our hierarchical algorithms achieve significant gains in sample efficiency and overall pick rates over baseline MARL algorithms in diverse warehouse configurations, and substantially outperform two established industry heuristics for order-picking systems
@inproceedings{krnjaic2024scalable,
title={Scalable Multi-Agent Reinforcement Learning for Warehouse Logistics with Robotic and Human Co-Workers},
author={Aleksandar Krnjaic and Raul D. Steleac and Jonathan D. Thomas and Georgios Papoudakis and Lukas Sch\"afer and Andrew Wing Keung To and Kuan-Ho Lao and Murat Cubuktepe and Matthew Haley and Peter B\"orsting and Stefano V. Albrecht},
booktitle={IEEE/RSJ International Conference on Intelligent Robots and Systems},
year={2023}
}
2023
Filippos Christianos, Georgios Papoudakis, Stefano V. Albrecht
Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning
Transactions on Machine Learning Research, 2023
Abstract | BibTex | arXiv | Code
TMLRdeep-rlmulti-agent-rl
Abstract:
This work focuses on equilibrium selection in no-conflict multi-agent games, where we specifically study the problem of selecting a Pareto-optimal Nash equilibrium among several existing equilibria. It has been shown that many state-of-the-art multi-agent reinforcement learning (MARL) algorithms are prone to converging to Pareto-dominated equilibria due to the uncertainty each agent has about the policy of the other agents during training. To address sub-optimal equilibrium selection, we propose Pareto Actor-Critic (Pareto-AC), which is an actor-critic algorithm that utilises a simple property of no-conflict games (a superset of cooperative games): the Pareto-optimal equilibrium in a no-conflict game maximises the returns of all agents and, therefore, is the preferred outcome for all agents. We evaluate Pareto-AC in a diverse set of multi-agent games and show that it converges to higher episodic returns compared to seven state-of-the-art MARL algorithms and that it successfully converges to a Pareto-optimal equilibrium in a range of matrix games. Finally, we propose PACDCG, a graph neural network extension of Pareto-AC, which is shown to efficiently scale in games with a large number of agents.
@inproceedings{christianos2023pareto,
title={Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning},
author={Filippos Christianos and Georgios Papoudakis and Stefano V. Albrecht},
journal={Transactions on Machine Learning Research (TMLR)},
year={2023}
}
Filippos Christianos, Georgios Papoudakis, Stefano V. Albrecht
Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning
AAMAS Workshop on Optimization and Learning in Multiagent Systems, 2023
Abstract | BibTex | arXiv
AAMASdeep-rlmulti-agent-rl
Abstract:
This work focuses on equilibrium selection in no-conflict multi-agent games, where we specifically study the problem of selecting a Pareto-optimal equilibrium among several existing equilibria. It has been shown that many state-of-the-art multi-agent reinforcement learning (MARL) algorithms are prone to converging to Pareto-dominated equilibria due to the uncertainty each agent has about the policy of the other agents during training. To address suboptimal equilibrium selection, we propose Pareto Actor-Critic (Pareto-AC), an actor-critic algorithm that utilises a simple property of no-conflict games (a superset of cooperative games with identical rewards): each agent can assume the others will choose actions that will lead to a Pareto-optimal equilibrium. We evaluate Pareto-AC in a diverse set of multi-agent games and show that it converges to higher episodic returns compared to alternative MARL algorithms, as well as successfully converging to a Pareto-optimal equilibrium in a range of matrix games.
@inproceedings{christianos2023pareto,
title={Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning},
author={Filippos Christianos and Georgios Papoudakis and Stefano V. Albrecht},
booktitle={AAMAS Workshop on Optimization and Learning in Multiagent Systems},
year={2023}
}
Aleksandar Krnjaic, Raul D. Steleac, Jonathan D. Thomas, Georgios Papoudakis, Lukas Schäfer, Andrew Wing Keung To, Kuan-Ho Lao, Murat Cubuktepe, Matthew Haley, Peter Börsting, Stefano V. Albrecht
Scalable Multi-Agent Reinforcement Learning for Warehouse Logistics with Robotic and Human Co-Workers
arXiv:2212.11498, 2023
Abstract | BibTex | arXiv | Website
multi-agent-rlsimulator
Abstract:
We envision a warehouse in which dozens of mobile robots and human pickers work together to collect and deliver items within the warehouse. The fundamental problem we tackle, called the order-picking problem, is how these worker agents must coordinate their movement and actions in the warehouse to maximise performance (e.g. order throughput). Established industry methods using heuristic approaches require large engineering efforts to optimise for innately variable warehouse configurations. In contrast, multi-agent reinforcement learning (MARL) can be flexibly applied to diverse warehouse configurations (e.g. size, layout, number/types of workers, item replenishment frequency), as the agents learn through experience how to optimally cooperate with one another. We develop hierarchical MARL algorithms in which a manager assigns goals to worker agents, and the policies of the manager and workers are co-trained toward maximising a global objective (e.g. pick rate). Our hierarchical algorithms achieve significant gains in sample efficiency and overall pick rates over baseline MARL algorithms in diverse warehouse configurations, and substantially outperform two established industry heuristics for order-picking systems
@misc{krnjaic2023scalable,
title={Scalable Multi-Agent Reinforcement Learning for Warehouse Logistics with Robotic and Human Co-Workers},
author={Aleksandar Krnjaic and Raul D. Steleac and Jonathan D. Thomas and Georgios Papoudakis and Lukas Sch\"afer and Andrew Wing Keung To and Kuan-Ho Lao and Murat Cubuktepe and Matthew Haley and Peter B\"orsting and Stefano V. Albrecht},
year={2023},
eprint={2212.11498},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
2022
Ibrahim H. Ahmed, Cillian Brewitt, Ignacio Carlucho, Filippos Christianos, Mhairi Dunion, Elliot Fosong, Samuel Garcin, Shangmin Guo, Balint Gyevnar, Trevor McInroe, Georgios Papoudakis, Arrasy Rahman, Lukas Schäfer, Massimiliano Tamborski, Giuseppe Vecchio, Cheng Wang, Stefano V. Albrecht
Deep Reinforcement Learning for Multi-Agent Interaction
AI Communications, 2022
Abstract | BibTex | arXiv | Publisher
AICsurveydeep-rlmulti-agent-rlad-hoc-teamworkagent-modellinggoal-recognitionsecurityexplainable-aiautonomous-driving
Abstract:
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
@article{albrecht2022aic,
author = {Ahmed, Ibrahim H. and Brewitt, Cillian and Carlucho, Ignacio and Christianos, Filippos and Dunion, Mhairi and Fosong, Elliot and Garcin, Samuel and Guo, Shangmin and Gyevnar, Balint and McInroe, Trevor and Papoudakis, Georgios and Rahman, Arrasy and Schäfer, Lukas and Tamborski, Massimiliano and Vecchio, Giuseppe and Wang, Cheng and Albrecht, Stefano V.},
title = {Deep Reinforcement Learning for Multi-Agent Interaction},
journal = {AI Communications, Special Issue on Multi-Agent Systems Research in the UK},
year = {2022}
}
Aleksandar Krnjaic, Jonathan D. Thomas, Georgios Papoudakis, Lukas Schäfer, Peter Börsting, Stefano V. Albrecht
Scalable Multi-Agent Reinforcement Learning for Warehouse Logistics with Robotic and Human Co-Workers
arXiv:2212.11498, 2022
Abstract | BibTex | arXiv
deep-rlmulti-agent-rl
Abstract:
This project leverages advances in Multi-Agent Reinforcement Learning (MARL) to improve the efficiency and flexibility of order-picking systems for large-scale commercial warehouses. We envision a warehouse of the future in which dozens or even hundreds of mobile robots and humans work together to collect and deliver items. The fundamental problem we tackle - called the order-picking problem - is how these agents must coordinate their movement and actions in the warehouse to maximise performance (e.g. order throughput) under given resource constraints. MARL algorithms implement a paradigm whereby the agents learn via a process of trial-and-error how to optimally collaborate with one another. Established industry methods using fixed heuristics require a large engineering effort to operate in specific warehouse configurations and resource constraints, and their achievable performance is often limited by heuristic design limitations. In contrast, the MARL framework can be applied to any warehouse configuration (e.g. size, layout, number/types of workers, item replenishment frequency) and resource constraints, and the learning process maximises performance by optimising agent behaviours for the specified warehouse environment.
@misc{Krnjaic2022HSNAC,
title={Scalable Multi-Agent Reinforcement Learning for Warehouse Logistics with Robotic and Human Co-Workers},
author={Aleksandar Krnjaic and Jonathan D. Thomas and Georgios Papoudakis and Lukas Sch\"afer and Peter B\"orsting and Stefano V. Albrecht,
year={2022},
eprint={2212.11498},
archivePrefix={arXiv}
}
Filippos Christianos, Georgios Papoudakis, Stefano V. Albrecht
Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning
arXiv:2209.14344, 2022
Abstract | BibTex | arXiv
deep-rlmulti-agent-rl
Abstract:
Equilibrium selection in multi-agent games refers to the problem of selecting a Pareto-optimal equilibrium. It has been shown that many state-of-the-art multi-agent reinforcement learning (MARL) algorithms are prone to converging to Pareto-dominated equilibria due to the uncertainty each agent has about the policy of the other agents during training. To address suboptimal equilibrium selection, we propose Pareto-AC (PAC), an actor-critic algorithm that utilises a simple principle of no-conflict games (a superset of cooperative games with identical rewards): each agent can assume the others will choose actions that will lead to a Pareto-optimal equilibrium. We evaluate PAC in a diverse set of multi-agent games and show that it converges to higher episodic returns compared to alternative MARL algorithms, as well as successfully converging to a Pareto-optimal equilibrium in a range of matrix games. Finally, we propose a graph neural network extension which is shown to efficiently scale in games with up to 15 agents.
@misc{christianos2022pareto,
title={Pareto Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning},
author={Filippos Christianos and Georgios Papoudakis and Stefano V. Albrecht},
year={2022},
eprint={2209.14344},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
2021
Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, Stefano V. Albrecht
Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks
Conference on Neural Information Processing Systems, Datasets and Benchmarks Track, 2021
Abstract | BibTex | arXiv | Code
NeurIPSdeep-rlmulti-agent-rl
Abstract:
Multi-agent deep reinforcement learning (MARL) suffers from a lack of commonly-used evaluation tasks and criteria, making comparisons between approaches difficult. In this work, we consistently evaluate and compare three different classes of MARL algorithms (independent learning, centralised multi-agent policy gradient, value decomposition) in a diverse range of cooperative multi-agent learning tasks. Our experiments serve as a reference for the expected performance of algorithms across different learning tasks, and we provide insights regarding the effectiveness of different learning approaches. We open-source EPyMARL, which extends the PyMARL codebase [Samvelyan et al., 2019] to include additional algorithms and allow for flexible configuration of algorithm implementation details such as parameter sharing. Finally, we open-source two environments for multi-agent research which focus on coordination under sparse rewards.
@inproceedings{papoudakis2021benchmarking,
title={Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks},
author={Georgios Papoudakis and Filippos Christianos and Lukas Sch\"afer and Stefano V. Albrecht},
booktitle = {Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS)},
year={2021},
url = {http://arxiv.org/abs/2006.07869},
openreview = {https://openreview.net/forum?id=cIrPX-Sn5n},
code = {https://github.com/uoe-agents/epymarl}
}
Georgios Papoudakis, Filippos Christianos, Stefano V. Albrecht
Agent Modelling under Partial Observability for Deep Reinforcement Learning
Conference on Neural Information Processing Systems, 2021
Abstract | BibTex | arXiv | Code
NeurIPSdeep-rlagent-modelling
Abstract:
Modelling the behaviours of other agents is essential for understanding how agents interact and making effective decisions. Existing methods for agent modelling commonly assume knowledge of the local observations and chosen actions of the modelled agents during execution. To eliminate this assumption, we extract representations from the local information of the controlled agent using encoder-decoder architectures. Using the observations and actions of the modelled agents during training, our models learn to extract representations about the modelled agents conditioned only on the local observations of the controlled agent. The representations are used to augment the controlled agent's decision policy which is trained via deep reinforcement learning; thus, during execution, the policy does not require access to other agents' information. We provide a comprehensive evaluation and ablations studies in cooperative, competitive and mixed multi-agent environments, showing that our method achieves significantly higher returns than baseline methods which do not use the learned representations.
@inproceedings{papoudakis2021local,
title={Agent Modelling under Partial Observability for Deep Reinforcement Learning},
author={Georgios Papoudakis and Filippos Christianos and Stefano V. Albrecht},
booktitle = {Proceedings of the Neural Information Processing Systems (NeurIPS)},
year = {2021}
}
Filippos Christianos, Georgios Papoudakis, Arrasy Rahman, Stefano V. Albrecht
Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing
International Conference on Machine Learning, 2021
Abstract | BibTex | arXiv | Video | Code
ICMLdeep-rlmulti-agent-rl
Abstract:
Sharing parameters in multi-agent deep reinforcement learning has played an essential role in allowing algorithms to scale to a large number of agents. Parameter sharing between agents significantly decreases the number of trainable parameters, shortening training times to tractable levels, and has been linked to more efficient learning. However, having all agents share the same parameters can also have a detrimental effect on learning. We demonstrate the impact of parameter sharing methods on training speed and converged returns, establishing that when applied indiscriminately, their effectiveness is highly dependent on the environment. We propose a novel method to automatically identify agents which may benefit from sharing parameters by partitioning them based on their abilities and goals. Our approach combines the increased sample efficiency of parameter sharing with the representational capacity of multiple independent networks to reduce training time and increase final returns.
@inproceedings{christianos2021scaling,
title={Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing},
author={Filippos Christianos and Georgios Papoudakis and Arrasy Rahman and Stefano V. Albrecht},
booktitle={International Conference on Machine Learning (ICML)},
year={2021}
}
2020
Georgios Papoudakis, Stefano V. Albrecht
Variational Autoencoders for Opponent Modeling in Multi-Agent Systems
AAAI Workshop on Reinforcement Learning in Games, 2020
Abstract | BibTex | arXiv
AAAIdeep-rlagent-modelling
Abstract:
Multi-agent systems exhibit complex behaviors that emanate from the interactions of multiple agents in a shared environment. In this work, we are interested in controlling one agent in a multi-agent system and successfully learn to interact with the other agents that have fixed policies. Modeling the behavior of other agents (opponents) is essential in understanding the interactions of the agents in the system. By taking advantage of recent advances in unsupervised learning, we propose modeling opponents using variational autoencoders. Additionally, many existing methods in the literature assume that the opponent models have access to opponent's observations and actions during both training and execution. To eliminate this assumption, we propose a modification that attempts to identify the underlying opponent model using only local information of our agent, such as its observations, actions, and rewards. The experiments indicate that our opponent modeling methods achieve equal or greater episodic returns in reinforcement learning tasks against another modeling method.
@inproceedings{papoudakis2020variational,
title={Variational Autoencoders for Opponent Modeling in Multi-Agent Systems},
author={Georgios Papoudakis and Stefano V. Albrecht},
booktitle={AAAI Workshop on Reinforcement Learning in Games},
year={2020}
}
Georgios Papoudakis, Filippos Christianos , Lukas Schäfer, Stefano V. Albrecht
Comparative Evaluation of Multi-Agent Deep Reinforcement Learning Algorithms
arXiv:2006.07869, 2020
Abstract | BibTex | arXiv
deep-rlmulti-agent-rl
Abstract:
Multi-agent deep reinforcement learning (MARL) suffers from a lack of commonly-used evaluation tasks and criteria, making comparisons between approaches difficult. In this work, we evaluate and compare three different classes of MARL algorithms (independent learners, centralised training with decentralised execution, and value decomposition) in a diverse range of multi-agent learning tasks. Our results show that (1) algorithm performance depends strongly on environment properties and no algorithm learns efficiently across all learning tasks; (2) independent learners often achieve equal or better performance than more complex algorithms; (3) tested algorithms struggle to solve multi-agent tasks with sparse rewards. We report detailed empirical data, including a reliability analysis, and provide insights into the limitations of the tested algorithms.
@misc{papoudakis2020comparative,
title={Comparative Evaluation of Multi-Agent Deep Reinforcement Learning Algorithms},
author={Georgios Papoudakis and Filippos Christianos and Lukas Sch\"afer and Stefano V. Albrecht},
year={2020},
eprint={2006.07869},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Georgios Papoudakis, Filippos Christianos, Stefano V. Albrecht
Local Information Opponent Modelling Using Variational Autoencoders
arXiv:2006.09447, 2020
Abstract | BibTex | arXiv
deep-rlagent-modelling
Abstract:
Modelling the behaviours of other agents (opponents) is essential for understanding how agents interact and making effective decisions. Existing methods for opponent modelling commonly assume knowledge of the local observations and chosen actions of the modelled opponents, which can significantly limit their applicability. We propose a new modelling technique based on variational autoencoders, which are trained to reconstruct the local actions and observations of the opponent based on embeddings which depend only on the local observations of the modelling agent (its observed world state, chosen actions, and received rewards). The embeddings are used to augment the modelling agent's decision policy which is trained via deep reinforcement learning; thus the policy does not require access to opponent observations. We provide a comprehensive evaluation and ablation study in diverse multi-agent tasks, showing that our method achieves comparable performance to an ideal baseline which has full access to opponent's information, and significantly higher returns than a baseline method which does not use the learned embeddings.
@misc{papoudakis2020opponent,
title={Local Information Opponent Modelling Using Variational Autoencoders},
author={Georgios Papoudakis and Filippos Christianos and Stefano V. Albrecht},
year={2020},
eprint={2006.09447},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
2019
Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, Stefano V. Albrecht
Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement Learning
arXiv:1906.04737, 2019
Abstract | BibTex | arXiv
surveydeep-rlmulti-agent-rl
Abstract:
Recent developments in deep reinforcement learning are concerned with creating decision-making agents which can perform well in various complex domains. A particular approach which has received increasing attention is multi-agent reinforcement learning, in which multiple agents learn concurrently to coordinate their actions. In such multi-agent environments, additional learning problems arise due to the continually changing decision-making policies of agents. This paper surveys recent works that address the non-stationarity problem in multi-agent deep reinforcement learning. The surveyed methods range from modifications in the training procedure, such as centralized training, to learning representations of the opponent's policy, meta-learning, communication, and decentralized learning. The survey concludes with a list of open problems and possible lines of future research.
@misc{papoudakis2019dealing,
title={Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement Learning},
author={Georgios Papoudakis and Filippos Christianos and Arrasy Rahman and Stefano V. Albrecht},
year={2019},
eprint={1906.04737},
archivePrefix={arXiv},
primaryClass={cs.LG}
}