Publications
Click on author names or tags to filter publications.
Selected filter tags (click to remove): NeurIPS
2021
Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, Stefano V. Albrecht
Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks
Conference on Neural Information Processing Systems, Datasets and Benchmarks Track (NeurIPS), 2021
Abstract | BibTex | arXiv | Code
NeurIPSdeep-rlmulti-agent-rl
Abstract:
Multi-agent deep reinforcement learning (MARL) suffers from a lack of commonly-used evaluation tasks and criteria, making comparisons between approaches difficult. In this work, we consistently evaluate and compare three different classes of MARL algorithms (independent learning, centralised multi-agent policy gradient, value decomposition) in a diverse range of cooperative multi-agent learning tasks. Our experiments serve as a reference for the expected performance of algorithms across different learning tasks, and we provide insights regarding the effectiveness of different learning approaches. We open-source EPyMARL, which extends the PyMARL codebase [Samvelyan et al., 2019] to include additional algorithms and allow for flexible configuration of algorithm implementation details such as parameter sharing. Finally, we open-source two environments for multi-agent research which focus on coordination under sparse rewards.
@inproceedings{papoudakis2021benchmarking,
title={Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks},
author={Georgios Papoudakis and Filippos Christianos and Lukas Sch\"afer and Stefano V. Albrecht},
booktitle = {Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS)},
year={2021},
url = {http://arxiv.org/abs/2006.07869},
openreview = {https://openreview.net/forum?id=cIrPX-Sn5n},
code = {https://github.com/uoe-agents/epymarl}
}
Georgios Papoudakis, Filippos Christianos, Stefano V. Albrecht
Agent Modelling under Partial Observability for Deep Reinforcement Learning
Conference on Neural Information Processing Systems (NeurIPS), 2021
Abstract | BibTex | arXiv | Code
NeurIPSdeep-rlagent-modelling
Abstract:
Modelling the behaviours of other agents is essential for understanding how agents interact and making effective decisions. Existing methods for agent modelling commonly assume knowledge of the local observations and chosen actions of the modelled agents during execution. To eliminate this assumption, we extract representations from the local information of the controlled agent using encoder-decoder architectures. Using the observations and actions of the modelled agents during training, our models learn to extract representations about the modelled agents conditioned only on the local observations of the controlled agent. The representations are used to augment the controlled agent's decision policy which is trained via deep reinforcement learning; thus, during execution, the policy does not require access to other agents' information. We provide a comprehensive evaluation and ablations studies in cooperative, competitive and mixed multi-agent environments, showing that our method achieves significantly higher returns than baseline methods which do not use the learned representations.
@inproceedings{papoudakis2021local,
title={Agent Modelling under Partial Observability for Deep Reinforcement Learning},
author={Georgios Papoudakis and Filippos Christianos and Stefano V. Albrecht},
booktitle = {Proceedings of the Neural Information Processing Systems (NeurIPS)},
year = {2021}
}
Rujie Zhong, Josiah P. Hanna, Lukas Schäfer, Stefano V. Albrecht
Robust On-Policy Data Collection for Data-Efficient Policy Evaluation
NeurIPS Workshop on Offline Reinforcement Learning (NeurIPS), 2021
Abstract | BibTex | arXiv | Code
NeurIPSdeep-rlpolicy-evaluation
Abstract:
This paper considers how to complement offline reinforcement learning (RL) data with additional data collection for the task of policy evaluation. In policy evaluation, the task is to estimate the expected return of an evaluation policy on an environment of interest. Prior work on offline policy evaluation typically only considers a static dataset. We consider a setting where we can collect a small amount of additional data to combine with a potentially larger offline RL dataset. We show that simply running the evaluation policy – on-policy data collection – is sub-optimal for this setting. We then introduce two new data collection strategies for policy evaluation, both of which consider previously collected data when collecting future data so as to reduce distribution shift (or sampling error) in the entire dataset collected. Our empirical results show that compared to on-policy sampling, our strategies produce data with lower sampling error and generally lead to lower mean-squared error in policy evaluation for any total dataset size. We also show that these strategies can start from initial off-policy data, collect additional data, and then use both the initial and new data to produce low mean-squared error policy evaluation without using off-policy corrections.
@inproceedings{zhong2021robust,
title={Robust On-Policy Data Collection for Data-Efficient Policy Evaluation},
author={Rujie Zhong and Josiah P. Hanna and Lukas Sch\"afer and Stefano V. Albrecht},
booktitle={NeurIPS Workshop on Offline Reinforcement Learning (OfflineRL)},
year={2021}
}
2020
Filippos Christianos, Lukas Schäfer, Stefano V. Albrecht
Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning
Conference on Neural Information Processing Systems (NeurIPS), 2020
Abstract | BibTex | arXiv
NeurIPSdeep-rlmulti-agent-rl
Abstract:
Exploration in multi-agent reinforcement learning is a challenging problem, especially in environments with sparse rewards. We propose a general method for efficient exploration by sharing experience amongst agents. Our proposed algorithm, called Shared Experience Actor-Critic (SEAC), applies experience sharing in an actor-critic framework. We evaluate SEAC in a collection of sparse-reward multi-agent environments and find that it consistently outperforms two baselines and two state-of-the-art algorithms by learning in fewer steps and converging to higher returns. In some harder environments, experience sharing makes the difference between learning to solve the task and not learning at all.
@inproceedings{christianos2020shared,
title={Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning},
author={Filippos Christianos and Lukas Sch\"afer and Stefano V. Albrecht},
booktitle={34th Conference on Neural Information Processing Systems},
year={2020}
}