Publications

Click on any author names or tags to filter publications.
All topic tags:
surveydeep-rlmulti-agent-rlagent-modellingad-hoc-teamworkautonomous-drivinggoal-recognitionexplainable-aicausalsecurityemergent-communicationiterated-learningintrinsic-rewardsimulatorstate-estimation
Selected tags (click to remove):
Stefano-V.-AlbrechtIgnacio-Carlucho
2022
Ibrahim H. Ahmed, Cillian Brewitt, Ignacio Carlucho, Filippos Christianos, Mhairi Dunion, Elliot Fosong, Samuel Garcin, Shangmin Guo, Balint Gyevnar, Trevor McInroe, Georgios Papoudakis, Arrasy Rahman, Lukas Schäfer, Massimiliano Tamborski, Giuseppe Vecchio, Cheng Wang, Stefano V. Albrecht
Deep Reinforcement Learning for Multi-Agent Interaction
AI Communications, 2022
Abstract | BibTex | arXiv | Publisher
AICsurveydeep-rlmulti-agent-rlad-hoc-teamworkagent-modellinggoal-recognitionsecurityexplainable-aiautonomous-driving
Abstract:
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
@article{albrecht2022aic,
author = {Ahmed, Ibrahim H. and Brewitt, Cillian and Carlucho, Ignacio and Christianos, Filippos and Dunion, Mhairi and Fosong, Elliot and Garcin, Samuel and Guo, Shangmin and Gyevnar, Balint and McInroe, Trevor and Papoudakis, Georgios and Rahman, Arrasy and Schäfer, Lukas and Tamborski, Massimiliano and Vecchio, Giuseppe and Wang, Cheng and Albrecht, Stefano V.},
title = {Deep Reinforcement Learning for Multi-Agent Interaction},
journal = {AI Communications, Special Issue on Multi-Agent Systems Research in the UK},
year = {2022}
}
Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, Stefano V. Albrecht
Towards Robust Ad Hoc Teamwork Agents By Creating Diverse Training Teammates
IJCAI Workshop on Ad Hoc Teamwork, 2022
Abstract | BibTex | arXiv | Code
IJCAIad-hoc-teamworkmulti-agent-rl
Abstract:
Ad hoc teamwork (AHT) is the problem of creating an agent that must collaborate with previously unseen teammates without prior coordination. Many existing AHT methods can be categorised as type-based methods, which require a set of predefined teammates for training. Designing teammate types for training is a challenging issue that determines the generalisation performance of agents when dealing with teammate types unseen during training. In this work, we propose a method to discover diverse teammate types based on maximising best response diversity metrics. We show that our proposed approach yields teammate types that require a wider range of best responses from the learner during collaboration, which potentially improves the robustness of a learner's performance in AHT compared to alternative methods.
@inproceedings{rahman2022towards,
title={Towards Robust Ad Hoc Teamwork Agents By Creating Diverse Training Teammates},
author={Arrasy Rahman and Elliot Fosong and Ignacio Carlucho and Stefano V. Albrecht},
booktitle={IJCAI Workshop on Ad Hoc Teamwork},
year={2022}
}
Elliot Fosong, Arrasy Rahman, Ignacio Carlucho, Stefano V. Albrecht
Few-Shot Teamwork
IJCAI Workshop on Ad Hoc Teamwork, 2022
Abstract | BibTex | arXiv
IJCAIad-hoc-teamworkmulti-agent-rl
Abstract:
We propose the novel few-shot teamwork (FST) problem, where skilled agents trained in a team to complete one task are combined with skilled agents from different tasks, and together must learn to adapt to an unseen but related task. We discuss how the FST problem can be seen as addressing two separate problems: one of reducing the experience required to train a team of agents to complete a complex task; and one of collaborating with unfamiliar teammates to complete a new task. Progress towards solving FST could lead to progress in both multi-agent reinforcement learning and ad hoc teamwork.
@inproceedings{fosong2022fewshot,
title={Few-Shot Teamwork},
author={Elliot Fosong and Arrasy Rahman and Ignacio Carlucho and Stefano V. Albrecht},
booktitle={IJCAI Workshop on Ad Hoc Teamwork},
year={2022}
}
Ignacio Carlucho, Arrasy Rahman, William Ard, Elliot Fosong, Corina Barbalata, Stefano V. Albrecht
Cooperative Marine Operations Via Ad Hoc Teams
IJCAI Workshop on Ad Hoc Teamwork, 2022
Abstract | BibTex | arXiv
IJCAIad-hoc-teamworkmulti-agent-rl
Abstract:
While research in ad hoc teamwork has great potential for solving real-world robotic applications, most developments so far have been focusing on environments with simple dynamics. In this article, we discuss how the problem of ad hoc teamwork can be of special interest for marine robotics and how it can aid marine operations. Particularly, we present a set of challenges that need to be addressed for achieving ad hoc teamwork in underwater environments and we discuss possible solutions based on current state-of-the-art developments in the ad hoc teamwork literature.
@inproceedings{Carlucho2022UnderwaterAHT,
title={Cooperative Marine Operations Via Ad Hoc Teams},
author={Ignacio Carlucho, Arrasy Rahman, William Ard, Elliot Fosong, Corina Barbalata, Stefano V. Albrecht},
booktitle={IJCAI Workshop on Ad Hoc Teamwork},
year={2022}
}
Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan, Peter Stone, Stefano V. Albrecht
A Survey of Ad Hoc Teamwork Research
European Conference on Multi-Agent Systems, 2022
Abstract | BibTex | arXiv
EUMASsurveyad-hoc-teamwork
Abstract:
Ad hoc teamwork is the research problem of designing agents that can collaborate with new teammates without prior coordination. This survey makes a two-fold contribution: First, it provides a structured description of the different facets of the ad hoc teamwork problem. Second, it discusses the progress that has been made in the field so far, and identifies the immediate and long-term open problems that need to be addressed in ad hoc teamwork.
@inproceedings{mirsky2022survey,
title={A Survey of Ad Hoc Teamwork Research},
author={Reuth Mirsky and Ignacio Carlucho and Arrasy Rahman and Elliot Fosong and William Macke and Mohan Sridharan and Peter Stone and Stefano V. Albrecht},
booktitle={European Conference on Multi-Agent Systems (EUMAS)},
year={2022}
}
Arrasy Rahman, Ignacio Carlucho, Niklas Höpner, Stefano V. Albrecht
A General Learning Framework for Open Ad Hoc Teamwork Using Graph-based Policy Learning
arXiv:2210.05448, 2022
Abstract | BibTex | arXiv
ad-hoc-teamworkdeep-rlagent-modelling
Abstract:
Open ad hoc teamwork is the problem of training a single agent to efficiently collaborate with an unknown group of teammates whose composition may change over time. A variable team composition creates challenges for the agent, such as the requirement to adapt to new team dynamics and dealing with changing state vector sizes. These challenges are aggravated in real-world applications where the controlled agent has no access to the full state of the environment. In this work, we develop a class of solutions for open ad hoc teamwork under full and partial observability. We start by developing a solution for the fully observable case that leverages graph neural network architectures to obtain an optimal policy based on reinforcement learning. We then extend this solution to partially observable scenarios by proposing different methodologies that maintain belief estimates over the latent environment states and team composition. These belief estimates are combined with our solution for the fully observable case to compute an agent's optimal policy under partial observability in open ad hoc teamwork. Empirical results demonstrate that our approach can learn efficient policies in open ad hoc teamwork in full and partially observable cases. Further analysis demonstrates that our methods' success is a result of effectively learning the effects of teammates' actions while also inferring the inherent state of the environment under partial observability.
@misc{Rahman2022POGPL,
title={A General Learning Framework for Open Ad Hoc Teamwork Using Graph-based Policy Learning},
author={Arrasy Rahman and Ignacio Carlucho and Niklas H\"opner and Stefano V. Albrecht},
year={2022},
eprint={2210.05448},
archivePrefix={arXiv}
}